3-3 Videos Guide

3-3a

Exercise:

- Analysis of the graph of $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$
- Increasing/decreasing test
- (a) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
(b) If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.
- The First Derivative Test
- Suppose that c is a critical number of a continuous function f.
(a) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(b) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
(c) If f^{\prime} is positive to the left and right of c, or negative to the left and right of c, then f has no local maximum or minimum at c.

3-3b
Definition: (concave upward/concave downward)

- If the graph of f lies above all of its tangents on an interval I, then f is called concave upward on I. If the graph of f lies below all of its tangents on I, then f is called concave downward on I.
- Concavity Test
- (a) If $f^{\prime \prime}(x)>0$ on an interval I, then the graph of f is concave upward on I.
(b) If $f^{\prime \prime}(x)<0$ on an interval I, then the graph of f is concave downward on I.

Definition: (inflection point)

- A point P on a curve $y=f(x)$ is called an inflection point if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.
- The Second Derivative Test
- Suppose $f^{\prime \prime}$ is continuous near c.
(a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
(b) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

3-3c

Exercise:

- For the function $f(x)=5 x^{2 / 3}-2 x^{5 / 3}$, find the following.
(a) Intervals on which f is increasing or decreasing.
(b) Local maximum and minimum values of f.
(c) Intervals of concavity and the inflection points.
(d) Then use the information from parts (a)-(c) to sketch the graph.

